世界上第一个地理信息系统是()

建筑知识

世界上第一个地理信息系统是( )。

世界上第一个地理信息系统是()

A、美国地理信息系统

B、加拿大地理信息系统

C、日本地理信息系统

D、奥地利地理信息系统

参考答案:

【正确答案:B】

世界上第一个地理信息系统来自加拿大。故选B。

地理信息系统的历史发展

古往今来,几乎人类所有活动都是发生在地球上,都与地球表面位置(即地理空间位置)息息相关,随着计算机技术的日益发展和普及,地理信息系统(Geography Information System,GIS)以及在此基础上发展起来的“数字地球”、“数字城市”在人们的生产和生活中起着越来越重要的作用。

GIS可以分为以下五部分:

人员,是GIS中最重要的组成部分。

开发人员必须定义GIS中被执行的各种任务,开发处理程序。

熟练的操作人员通常可以克服GIS软件功能的不足,但是相反的情况就不成立。

最好的软件也无法弥补操作人员对GIS的一无所知所带来的负作用。

数据,精确的可用的数据可以影响到查询和分析的结果。

硬件,硬件的性能影响到软件对数据的处理速度,使用是否方便及可能的输出方式。

软件,不仅包含GIS软件,还包括各种数据库,绘图、统计、影像处理及其它程序。

过程,GIS 要求明确定义,一致的方法来生成正确的可验证的结果。

GIS属于信息系统的一类,不同在于它能运作和处理地理参照数据。

地理参照数据描述地球表面(包括大气层和较浅的地表下空间)空间要素的位置和属性,在GIS中的两种地理数据成分:空间数据,与空间要素几何特性有关;属性数据,提供空间要素的信息。

地理信息系统(GIS)与全球定位系统(GPS)、遥感系统(RS)合称3S系统。

地理信息系统(GIS) 是一种具有信息系统空间专业形式的数据管理系统。

在严格的意义上, 这是一个具有集中、存储、操作、和显示地理参考信息的计算机系统。

例如,根据在数据库中的位置对数据进行识别。

实习者通常也认为整个GIS系统包括操作人员以及输入系统的数据。

地理信息系统(GIS)技术能够应用于科学调查、资源管理、财产管理、发展规划、绘图和路线规划。

例如,一个地理信息系统(GIS)能使应急计划者在自然灾害的情况下较易地计算出应急反应时间,或利用GIS系统来发现那些需要保护不受污染的湿地。

地理数据和地理信息

什么是信息(Information)?1948年,美国数学家、信息论的创始人香农(Claude Elwood Shannon)在题为《通讯的数学理论》的论文中指出:“信息是用来消除随机不定性的东西”; 1948年,美国著名数学家、控制论的创始人维纳(Norbert Wiener)在《控制论》一书中,指出:“信息就是信息,既非物质,也非能量。

” 狭义信息论将信息定义为“两次不定性之差”,即指人们获得信息前后对事物认识的差别;广义信息论认为,信息是指主体(人、生物或机器)与外部客体(环境、其他人、生物或机器)之间相互联系的一种形式,是主体与客体之间的一切有用的消息或知识。

我们认为信息是通过某些介质向人们(或系统)提供关于现实世界新的事实的知识,它来源于数据且不随载体变化而变化,它具有客观性、实用性、传输性和共享性的特点 。

信息与数据既有区别,又有联系。

数据是定性、定量描述某一目标的原始资料,包括文字、数字、符号、语言、图像、影像等,它具有可识别性、可存储性、可扩充性、可压缩性、可传递性及可转换性等特点。

信息与数据是不可分离的,信息来源于数据,数据是信息的载体。

数据是客观对象的表示,而信息则是数据中包含的意义,是数据的内容和解释。

对数据进行处理(运算、排序、编码、分类、增强等)就是为了得到数据中包含的信息。

数据包含原始事实,信息是数据处理的结果,是把数据处理成有意义的和有用的形式。

地理信息作为一种特殊的信息,它同样来源于地理数据。

地理数据是各种地理特征和现象间关系的符号化表示,是指表征地理环境中要素的数量、质量、分布特征及其规律的数字、文字、图像等的总和。

地理数据主要包括空间位置数据、属性特征数据及时域特征数据三个部分。

空间位置数据描述地理对象所在的位置,这种位置既包括地理要素的绝对位置(如大地经纬度坐标),也包括地理要素间的相对位置关系(如空间上的相邻、包含等)。

属性数据有时又称非空间数据,是描述特定地理要素特征的定性或定量指标,如公路的等级、宽度、起点、终点等。

时域特征数据是记录地理数据采集或地理现象发生的时刻或时段。

时域特征数据对环境模拟分析非常重要,正受到地理信息系统学界越来越多的重视。

空间位置、属性及时域特征构成了地理空间分析的三大基本要素。

地理信息是地理数据中包含的意义,是关于地球表面特定位置的信息,是有关地理实体的性质、特征和运动状态的表征和一切有用的知识。

作为一种特殊的信息,地理信息除具备一般信息的基本特征外,还具有区域性、空间层次性和动态性特点。

当今社会,人们非常依赖计算机以及计算机处理过的信息。

在计算机时代,信息系统部分或全部由计算机系统支持,因此,计算机硬件、软件、数据和用户是信息系统的四大要素。

其中,计算机硬件包括各类计算机处理及终端设备;软件是支持数据信息的采集、存贮加工、再现和回答用户问题的计算机程序系统;数据则是系统分析与处理的对象,构成系统的应用基础;用户是信息系统所服务的对象。

从20世纪中叶开始,人们就开始开发出许多计算机信息系统,这些系统采用各种技术手段来处理地理信息,它包括:

○ 数字化技术:输入地理数据,将数据转换为数字化形式的技术;

○ 存储技术:将这类信息以压缩的格式存储在磁盘、光盘、以及其他数字化存储介质上的技术;

○ 空间分析技术:对地理数据进行空间分析,完成对地理数据的检索、查询,对地理数据的长度、面积、体积等的量算,完成最佳位置的选择或最佳路径的分析以及其他许多相关任务的方法;

○ 环境预测与模拟技术:在不同的情况下,对环境的变化进行预测模拟的方法;

○ 可视化技术:用数字、图像、表格等形式显示、表达地理信息的技术。

这类系统共同的名字就是地理信息系统(GIS , Geographic Information System),它是用于采集、存储、处理、分析、检索和显示空间数据的计算机系统。

与地图相比,GIS具备的先天优势是将数据的存储与数据的表达进行分离,因此基于相同的基础数据能够产生出各种不同的产品。

由于不同的部门和不同的应用目的,GIS的定义也有所不同。

当前对GIS的定义一般有四种观点:即面向数据处理过程的定义、面向工具箱的定义、面向专题应用的定义和面向数据库的定义。

Goodchild把GIS定义为“采集、存贮、管理、分析和显示有关地理现象信息的综合技术系统”。

Burrough认为“GIS是属于从现实世界中采集、存储、提取、转换和显示空间数据的一组有力的工具”,俄罗斯学者也把GIS定义为“一种解决各种复杂的地理相关问题,以及具有内部联系的工具 ”。

面向数据库是定义则是在工具箱定义的基础上,更加强调分析工具和数据库间的连接,认为GIS是空间分析方法和数据管理系统的结合。

面向专题应用的定义是在面向过程定义的基础上,强调GIS所处理的数据类型,如土地利用GIS、交通GIS等;我们认为地理信息系统它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

它和其他计算系统一样包括计算机硬件、软件、数据和用户四大要素。

只不过GIS中的所有数据都具有地理参照,也就是说,数据通过某个坐标系统与地球表面中的特定位置发生联系。

地理信息系统简称GIS,多数人认为是Geographical Information System(地理信息系统),也有人认为是Geo-information System(地学信息系统)等等。

人们对GIS理解在不断深入,内涵在不断拓展,“GIS”中,“S”的含义包含四层意思:

一是系统(System),是从技术层面的角度论述地理信息系统,即面向区域、资源、环境等规划、管理和分析,是指处理地理数据的计算机技术系统,但更强调其对地理数据的管理和分析能力,地理信息系统从技术层面意味着帮助构建一个地理信息系统工具,如给现有地理信息系统增加新的功能或开发一个新的地理信息系统或利用现有地理信息系统工具解决一定的问题,如一个地理信息系统项目可能包括以下几个阶段:

(1)定义一个问题;

(2)获取软件或硬件;

(3)采集与获取数据;

(4)建立数据库;

(5)实施分析;

(6)解释和展示结果。

这里的地理信息系统技术(Geographic information technologies)是指收集与处理地理信息的技术,包括全球定位系统(GPS)、遥感(Remote Sensing)和GIS。

从这个含义看,GIS包含两大任务,一是空间数据处理;二是GIS应用开发。

二是科学(Science),是广义上的地理信息系统,常称之为地理信息科学,是一个具有理论和技术的科学体系,意味着研究存在于GIS和其它地理信息技术后面的理论与观念(GIScience)。

三是代表着服务(Service),随着遥感等信息技术、互联网技术、计算机技术等的应用和普及,地理信息系统已经从单纯的技术型和研究型逐步向地理信息服务层面转移,如导航需要催生了导航GIS的诞生,著名的搜索引擎Google也增加了Google Earth功能,GIS成为人们日常生活中的一部分。

当同时论述GIS技术、GIS科学或GIS服务时,为避免混淆,一般用GIS表示技术,GIScience或GISci表示地理信息科学,GIService或GISer表示地理信息服务。

四是研究(Studies),即GIS= Geographic Information Studies,研究有关地理信息技术引起的社会问题(societal context),如法律问题(legal context),私人或机密主题,地理信息的经济学问题等。

因此,地理信息系统(Geographic Information System,GIS)是一种专门用于采集、存储、管理、分析和表达空间数据的信息系统,它既是表达、模拟现实空间世界和进行空间数据处理分析的“工具”,也可看作是人们用于解决空间问题的“资源”,同时还是一门关于空间信息处理分析的“科学技术” 。

60年代早期,在核武器研究的推动下,计算机硬件的发展导致通用计算机“绘图”的应用。

1967年,世界上第一个真正投入应用的地理信息系统由联邦林业和农村发展部在加拿大安大略省的渥太华研发。

罗杰·汤姆林森博士开发的这个系统被称为加拿大地理信息系统(CGIS ) ,用于存储,分析和利用加拿大土地统计局( CLI,使用的1:50,000比例尺,利用关于土壤、农业、休闲,野生动物、水禽、林业和土地利用的地理信息,以确定加拿大农村的土地能力。

)收集的数据,并增设了等级分类因素来进行分析。

CGIS是“计算机制图”应用的改进版,它提供了覆盖,资料数字化/扫描功能。

它支持一个横跨大陆的国家坐标系统,将线编码为具有真实的嵌入拓扑结构的“弧”,并在单独的文件中存储属性和区位信息。

由于这一结果,汤姆林森已经成为称为“地理信息系统之父”,尤其是因为他在促进收敛地理数据的空间分析中对覆盖的应用。

CGIS一直持续到20世纪70年代才完成,但耗时太长,因此在其发展初期,不能与如Intergraph这样的销售各种商业地图应用软件的供应商竞争。

CGIS一直使用到20世纪90年代,并在加拿大建立了一个庞大的数字化的土地资源数据库。

它被开发为基于大型机的系统以支持一个在联邦和省的资源规划和管理。

其能力是大陆范围内的复杂数据分析。

CGIS未被应用于商业 。

微型计算机硬件的发展使得象ESRI和CARIS那样的供应商成功地兼并了大多数的CGIS特征,并结合了对空间和属性信息的分离的第一种世代方法与对组织的属性数据的第二种世代方法入数据库结构。

20世纪80年代和90年代产业成长 了应用了GIS的UNIX工作站和个人计算机飞速增长。

至20世纪末,在各种系统中迅速增长使得其在相关的少量平台已经得到了巩固和规范。

并且用户开始提出了在互联网上查看GIS数据的概念,这要求数据的格式和传输标准化。

地理信息系统

地理信息系统是计算机科学、地理学、测量学和地图学等多门学科的交叉,它是以地理空间数据库为基础,采用地理模型分析方法实时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。

从表现形式来看,GIS表现为计算机软硬件系统,其核心是管理、计算、分析地理坐标位置信息及相关位置上属性信息的数据库系统。它表达的是空间位置及所有与位置相关的信息,所以,GIS又是地球空间实体的再现和综合,其信息的基本表达形式是各种二维或三维电子地图。因此,GIS也可简单定义为“用于采集、模拟、处理、检索、分析和表达地理空间数据的计算机信息系统”。

(一)GIS发展简史

GIS最早起源于20世纪60年代“要把地图变成数字形式的地图,便于计算机处理分析”这样的目的。1963年,加拿大测量学家R.F.Tomlinson首先提出了GIS这一术语,并建成世界上第一个GIS(加拿大地理信息系统,CGIS),用于自然资源的管理和规划。那时的GIS注重于空间数据的地学处理。

20世纪70年代以后,随着计算机软、硬件水平的提高,以及政府部门在自然资源管理、规划和环境保护等方面对空间信息进行分析、处理的需求,GIS得到了巩固和发展。

进入20世纪80年代,GIS的应用领域迅速扩大,商业化的软件开始进入市场,其应用从基础信息管理与规划转向空间决策支持分析,地理信息产业的雏形开始形成。

20世纪90年代以后,伴随着计算机技术和网络技术的迅猛发展,GIS的应用也日趋深化和广泛,在国土资源、农业、气象、环境、城市规划等领域成为常备的工作系统。尤其是1998年“数字地球”的概念被提出以后,GIS在全球得到了空前迅速的发展,广泛应用于各个领域,产生了巨大的经济和社会效益。

我国GIS的发展自20世纪80年代初开始,以1980年中国科学院遥感应用研究所成立全国第一个GIS研究室为标志,经历了准备(1980~1985年)、发展(1985~1995年)、产业化(1996年以后)3个阶段。尤其是近年来,国内出现了不少优秀的GIS软件。

(二)GIS的最新发展

1.日趋与计算机信息技术融合

近年来随着计算机软、硬件技术和通信技术的高速发展,GIS技术也得到了迅速的发展和更广泛的应用,并日趋与主流IT技术融合,成为信息技术发展的一个新方向。

GIS发展的动力一方面来自于日益广泛的应用领域对GIS不断提高的要求;另一方面,计算机科学的飞速发展为GIS提供了先进的工具和手段。许多计算机领域的新技术,如面向对象技术、三维技术、图像处理和人工智能技术都可以直接应用到GIS中;同时,由于空间技术的迅猛发展,特别是遥感技术的发展,提供了地球空间环境中不同时相的数据,使GIS的作用日渐突出,GIS不断升级并能提供存储、处理和分析海量地理数据的环境。

组件式GIS技术的发展使之可以与其他计算机信息系统无缝集成、跨语言使用,并提供了无限扩展的数据可视化表达形式。

2.动态、多源、多维、网络化

最新GIS技术将逐渐摆脱先前的主要处理静态的、二维的、数字式的地图技术的约束,而从传统的静态地图、电子地图发展到能对空间信息进行可视化和动态分析、动态模拟,支持动态的、可视化的、交互的环境来处理、分析、显示多维和多源地理空间数据。其中,可视化仿真技术能使人们在三维图形世界中直接对具有形态的信息进行实时交互操作;虚拟现实技术以三维图形为主,结合网络、多媒体、立体视觉、新型传感技术,能创造一个让人身临其境的虚拟的数字地球或数字城市。

先进的对地观测技术、互操作技术、海量数据存储和压缩技术、网络技术、分布式技术、面向对象技术、空间数据仓库、数据挖掘等技术的发展都为GIS的发展和创新创造了新的手段。

(三)第四代GIS技术

随着计算机硬件性能的提高以及面向对象、网络和数据挖掘等主流IT技术的发展,在科技部有关部门的倡导下,目前国内学术界又提出了第四代GIS技术的概念。第四代GIS技术将主要有如下特点:

(1)支持“数字地球”或“数字城市”概念的实现,从二维向多维发展,从静态数据处理向动态数据处理发展,具有时序数据处理能力。

(2)基于网络的分布式数据管理及计算、WebGIS和B/S体系结构,用户可以实现远程空间数据调用、检索、查询、分析,具有联机事务管理(OLTP)和联机分析(OLAP)管理能力。

(3)面向空间实体及其相互关系的数据组织和融合,具有矢量和遥感影像数据互动等多源数据的装载与融合能力,可实现多尺度比例尺数据无缝融合与互动。

(4)具有统一的海量数据存储、查询和分析处理能力及基于空间数据的数据挖掘和强大的模型支持能力。

(5)具有与其他计算机信息系统的整体集成能力。例如与MIS、ERP、OA等各种企业信息化系统的无缝集成;微型、嵌入式GIS与各种掌上终端设备集成,如PDA、手机、GPS接收设备等。

(6)具有虚拟现实表达及自适应可视化能力,针对不同的用户出现不同的用户界面及地图和虚拟现实效果。

(四)GIS的应用

人类使用的信息中有80%与地理位置和空间分布有关,所以GIS具有非常广泛的应用。目前,GIS已经比较成熟地应用于军事、自然资源管理、土地和城市管理、电力、电信、石油和天然气、城市规划、交通运输、环境监测和保护、110和120快速反应系统等。

今后,GIS的应用将在市场分析、企业客户关系管理、银行、保险、人口统计、房地产开发、个人位置服务等领域得到广泛的应用,这些领域将是GIS产业发展的新的增长点。实际上,GIS的应用将加速度地深入人们的工作和生活的各个方面。GoogleEarth的流行就是GIS技术深入到日常生活每一个角落的明证。

由于地理信息在人类生活和国民经济中的重要作用,GIS在未来的几十年中将保持高速发展的势头,成为IT高科技领域的核心技术。

近几年来,随着移动通信技术的发展,GIS的应用范围迅速扩展到人们的日常生活中。集成GIS、GPS、GSM的技术已开始广泛应用于车辆安全防范系统和调度系统,为人们提供车辆反劫防盗、报警、道路指引、医疗救护以及在此系统平台基础上扩展各种电子商务增值服务。

以医疗救护为例,当患者向监控中心请求急救时,监控中心可以从GIS电子地图上查看到患者的具体位置,并同时搜索最近的急救车辆,让最近的车辆前去接患者。患者进入救护车后,监控中心可以通过双向通话功能,指导救护车上的医生实施救护治疗,同时通过GIS的最优路径功能,给救护车指引道路,使其以最快的速度到达医院或急救中心。而在救护车行进的过程中,患者的家属可以通过互联网立即上网查询救护车的行进位置及患者的状态信息。通过GIS,并结合GPS和GSM无线通信及网络,使患者、家属、救护车及医生之间建立了无缝沟通体系,最终使患者能得到快速、及时的治疗。

如果在车辆移动目标、家居固定点目标、重点保护单位甚至路灯上都安装了GPS、GSM或其他无线通信设备,那么我们在城市生活中,无论是开车、行走或者是在单位、在家里,都可以通过由GIS、GPS、互联网以及无线通信技术构成的综合服务系统获得急救、报警和各种商务服务,真正使我们处于立体的、全方位的数字化生活中,体验数字空间高科技价值。

GIS、RS、GPS等构成的空间信息技术将是未来发展最快的、最激动人心的领域之一,它结合通信及其他IT技术,为人类展现了一种全新的工作和生活模式(A.R.Mermut,H.Eswaran,2001)。当利用最新的GIS技术把城市、国家乃至整个地球都高度浓缩到计算机屏幕上的时候,人类对自己的命运和未来就有了更充分的把握。

(五)GIS与土地管理

GIS早已不限于地理学研究和应用的领域,目前已与各行各业和我们的日常生活产生了千丝万缕的联系,更重要的是它的应用领域还在不断扩大,甚至可触及企业信息化的过程中。

GIS应用于土壤科学的研究,它是现实世界的一个模型和模拟实现。土壤资源信息可以在GIS系统中进行存取、变换和对话式操作,作为土壤资源分类、评价、规划、管理与利用决策的依据,为土壤资源可持续利用服务。GIS应用于土壤学研究的各个方面,包括:①土壤制图技术及土壤采样技术;

②土壤侵蚀预测与评价;

③土壤资源污染与防治;

④土壤养分流失评价;

⑤土壤资源评价和管理;

⑥作物生长模拟等。具体如1983年美国土壤保持局开发出农用土地评价和用地估计系统,系统中的农用土地评价包括土壤生产力的分等定级、土壤适宜性评价、土壤生产力潜力评价。1989年美国土壤保持局运用土壤信息系统保护土壤生态环境,控制土壤污染。1990年土壤侵蚀预测模型在土壤信息系统中已经能够成功运用,主要采用的分析手段有土壤侵蚀诺漠图、微机软件图、小溪河岸侵蚀诺漠图。

1.建立为农业生产服务的应用系统

如日本的农耕地土地资源信息系统,它包括了土壤信息系统、作物栽培试验信息系统、农业气象信息系统等子系统;保加利亚的计算机农业综合管理系统从20世纪80年代初开始运行。

进入20世纪90年代,GIS在土壤学研究领域的应用方面继续拓展,其作用和地位日益受到关注。从1994年开始的第15、16、17届国际土壤大会上持续讨论了土壤信息系统在持续农业和全球变化中的应用、土壤数据库的结构和联网等有关问题。同时,在应用上进一步趋向农业实际生产,直接服务于农场管理和经营,如进行农业技术咨询、牧场水源选点、作物生产管理、机械化施肥等方面。

中国的土壤工作者于20世纪80年代中期也开始进行土壤数据库建立、土壤信息系统的研制和应用工作。1986年底,北京大学遥感中心等主持了土壤侵蚀信息系统研究,建立了区域土壤侵蚀信息系统,这是我国较早关于土壤信息系统方面的研究。1989年,南京土壤研究所用两年时间研究了1∶50万东北三江平原土壤信息系统土壤图与数据库的建立;1990年,又研究了1∶5万江西红壤生态站土壤信息系统土壤侵蚀图;1991年,在“利用信息系统技术编制土壤退化图”研究中,应用从土壤土地数据库建立到土壤退化评价方法等一系列现代信息系统技术,编制出了实验区的土壤水蚀危害和风蚀评价图;1992年,又基本完成了海南岛土壤和土地利用信息库及信息系统制图工作。1991年,中国科学院沈阳应用生态研究所主持了“区域微机土壤信息系统的建立与应用”研究,在吉林省农安县的试验结果表明,这是一个简单但实用的土壤信息系统。1999年,胡月明等运用基本土壤数据库建立了红壤分类和评价的信息系统。

2.预测土壤空间变化及分布

由于GIS技术在土壤制图中的深入应用,怎样更准确地由有限的单个点位的土壤原始数据分析土壤属性的空间分布成为关注的焦点。具体来说,由于土壤数据库的信息来源于土壤分类、分色制图及制图的综合,产生了土壤空间分异类型的位移,而现代GIS技术又要求大量信息源,因此许多土壤科学家将兴趣集中到土壤空间变异性正确表达(即土壤图在GIS中的正确表达)的研究上。

(1)地形分析。Morre、Bourennane、Gessier和Oden等的研究均表明,某地区土壤属性与该地区的地形地貌特征和景观位置有明显的相关性,也就是与土壤的成土过程密切相关,可用下式表示:

中国耕地质量等级调查与评定(广东卷)

式中:

Si——土壤属性如土壤厚度、pH等;

i——由气候、母质、地貌历史、植被等因素决定的某地区海拔、坡度、坡形凹凸、水流长度和特定流域面积等原始地形数据可以通过一定精度的DEM计算出,复合地形数据,可以依经验判断或根据描述下垫面的物理发生过程的方程式进行简化。DEM可以由GIS技术生成,所以GIS的应用和地形分析可以提高土壤属性空间分布预测的精度。

(2)地质统计学与GIS的结合。GIS在存储、查询和显示地理数据方面发展得相当快,但在提供空间分析模块方面则发展得较慢。由于缺少通用的空间分析模块,使得GIS在解决某些空间问题中的应用受到很大的限制。

地质统计学是由南非矿山地质工程师D.G.Krige于1951年提出的,因此这一理论也以“克里格法”(Kriging)来命名,并由法国地质学家Dr.Matheron于1962年完善并创立。该学科在矿产储量研究方面起到了巨大作用。这是一种求最优、线形、无偏内插估计量值的方法(BLUE),在充分考虑信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构以后,利用变异函数(Varigram)为工具,对每一样品值分别赋予一定的权系数,加权平均来估计块段品位。

国内外土壤科学家已广泛地应用克里格法来预测非采样点的土壤属性,常用的方法有普通克里格法(OK)、泛克里格法(UK)、指示克里格法(IK)、协同克里格法(CK)、回归克里格法(RK)、点克里格法(PK)、块克里格法(BK)等。他们的研究还表明,在应用克里格法建立模型的时候,综合应用土壤和土地信息,如土壤分类、参比地区土壤属性、坡度、高程等,可以大大提高克里格法的插值精度,还可以降低由于测定大量样品而需要的成本,也可以减少由于样品点太少而带来的误差。我国从20世纪80年代开始利用克里格法研究土壤参数的空间变异性,2000年以后在这方面的报道已经越来越多。

近几年来,一些学者开始研究地质统计学和GIS之间的相互关系,并在GIS软件中提供一些空间分析功能。例如,美国圣巴巴拉NCGIA的SAN模型提供了在ArcGIS软件中计算和显示空间自相关和其他空间量的功能,二者的相互结合一方面可以大大加强GIS的分析功能,使大量数据所隐含的空间信息得以表达,发挥更大的作用;另一方面,也可以增强空间分析的能力。考虑到空间分析技术目前的发展十分迅速,新理论不断出现,空间分析模块已经成为GIS中的必选模块。

免责声明:本网站所提供的所有信息、文章、图片、视频等内容,均基于公开资料整理而来,旨在为用户提供参考和学习的便利。本网站不保证所有信息的完整性和准确性,亦不对因使用本网站内容而造成的任何直接或间接损失承担责任。
信息来源:本网站所发布的信息来源于多个渠道,包括但不限于网络公开资料、官方文件、第三方研究报告等。在收集和整理这些信息时,我们尽力确保信息的真实性和可靠性,但无法避免可能存在的误差或遗漏。因此,用户在使用这些信息时,应自行核实其准确性和完整性。
更新与修改:本网站有权根据实际情况对免责声明进行更新和修改。用户在访问本网站时,应关注并遵守最新的免责声明内容。请用户在使用本网站内容时,务必谨慎对待,并自行承担相关风险。如有任何疑问或建议,请随时与我们联系,我们将竭诚为您服务。